Equi-affine Differential Invariants of a Pair of Curves
نویسندگان
چکیده
Let G = SAff(n, R) be the group of all transformations in R as F (x) = gx + b such that g ∈ SL(n, R) and b ∈ R. The system of generators for the differential algebra of all G-invariant differential polynomials of a pair of curves is found for the group SAff(n, R). The conditions for G-equivalence of a pair of curves is obtained.
منابع مشابه
Differential Invariants of Equi–Affine Surfaces
We show that the algebra of equi-affine differential invariants of a suitably generic surface S ⊂ R is entirely generated by the third order Pick invariant via invariant differentiation. The proof is based on the new, equivariant approach to the method of moving frames. The goal of this paper is to prove that, in three-dimensional equi-affine geometry, all higher order differential invariants o...
متن کاملAffine Differential Invariants for Invariant Feature Point Detection
Image feature points are detected as pixels which locally maximize a detector function, two commonly used examples of which are the (Euclidean) image gradient and the Harris-Stephens corner detector. A major limitation of these feature detectors are that they are only Euclidean-invariant. In this work we demonstrate the application of a 2D affine-invariant image feature point detector based on ...
متن کاملContact Geometry of Curves
Cartan’s method of moving frames is briefly recalled in the context of immersed curves in the homogeneous space of a Lie group G. The contact geometry of curves in low dimensional equi-affine geometry is then made explicit. This delivers the complete set of invariant data which solves the G-equivalence problem via a straightforward procedure, and which is, in some sense a supplement to the equi...
متن کاملPoisson Geometry of Differential Invariants of Curves in Some Nonsemisimple Homogenous Spaces
In this paper we describe a family of compatible Poisson structures defined on the space of coframes (or differential invariants) of curves in flat homogeneous spaces of the form M ∼= (G n IRn)/G where G ⊂ GL(n, IR) is semisimple. This includes Euclidean, affine, special affine, Lorentz, and symplectic geometries. We also give conditions on geometric evolutions of curves in the manifold M so th...
متن کاملMoving Frame Derivation of the Fundamental Equi-Affine Differential Invariants for Level Set Functions
Remark : An alternative approach, advocated in [4], is to use the infinitesimal invariance criteria, which requires solving a linear system of first order partial differential equations based on the prolonged infinitesimal generators of the transformation group. In contrast, the moving frame method is completely algebraic, typically much simpler, and, moreover provides significantly more inform...
متن کامل